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Abstract-A statistical method for calculating the diffusion coefficient D in solids is discussed. The method 
reveals strong dependence of D on the measurable parameters characteristic of the structure and vibrational 
spectrum of particles in a solid body. The probability is calculated of a large short-time energy fluctuation 
(of mean life-time 7) at one of the interacting particles with allowance for a change in the state of surrounding 
particles whose motion provides the supply of necessary energy to the place of its casual concentration at 
distances I z a,r/2. 

Time change of the coordinates and impulses of particles as well as energy fluctuations in macroscopic 
volumes are described in terms of the theory of steady random functions. 

In the final equations the time-space scales of large energy fluctuation at individual particles, their 
probability, diffusion coefficient and pre-exponential factor D, are related with the measurable parameters 
of a solid (E, x, 6, A,,, Q, y); here D, appears to be an exponential function of these parameters. 

A procedure is shown of applying the relationships obtained for processes of self-diffusion and diffusion 
of admixtures in solids of different structures. A comparison is made with the corresponding experimental 

data. 

NOMENCLATURE 

diffusivity ; 

pre-exponential factor; 
activation energy 
energy of vacancy formation; 
absolute temperature; 
gas constant; 
Planck constant; 
Boltzmann constant; 
time; 
Debye temperature; 
coordinational number ; 
Debye wavelength ; 
rate of energy transfer over “grid” degree 
of freedom; 
volume of elementary crystal cell ; 
number of degrees of freedom in elemen- 
tary crystal cell; 
particle coordinates; 
components of particle impulse; 
mass of particles; 
root-mean-square displacement of 
particle passing through the barrier. 

As IS well known the temperature dependence of 
the diffusivity may be expressed as 

. 

Here it is supposed that D, and E practically do 
not depend on T and E 9 RIT: Comparison of 
the theoretical and experimental values of D, 
often reveals a sharp disagreement between them 
(see for example [l-4]). Such a disagreement 
is thought to be caused by some reasons con- 
nected with the fundamentals of the diffusion 
theory (and other activation processes) in solids 
[5112]. One of these reasons lies in the fact that 
in the diffusion theory the so-called “individu- 
alistic” description of particles passing through 
a potential barrier is assumed [13]. 

The “individualistic” description of an elemen- 
tary diffusion act does not take into account a 
collective character of motion of interacting 
solid particles but consider the behaviour and 
state of those particles which directly pass over 
the potential barrier. Ya. I. Frenkel [13] noted 

1329 



1330 YU. L. KHAIT 

that the systematic diffusion theory for solids 
should allow for the appropriate changes in the 
solid state which accompany a single process 
of particle passing over the potential barrier. 

In this connection the author undertook some 
attempts [5-81 to consider this problem which 

required investigation of the probability of’large 
energy fluctuations on separate particles of a 
solid when the thermodynamic fluctuation 
theory cannot be applied. On the basis of the 

approach proposed in [5,6] a method [7,8] has 
been developed for calculation of the probability 
of large energy fluctuations on individual 
particles in the systems of strong interacting 
particles. The method allows for changes in the 
system due to large fluctuation on an individual 
solid particle. 

The proposed method was applied [S-12] 
for consideration of the kinetics of some pro- 

cesses (including diffusion [S, 11, 121) in con- 
densed bodies. In these cases the final equations 
include interaction between crystal particles in 
terms of the measured parameters charac- 

terizing the process and system (E, x. 0, I,,. Q 

and 7). 
In the present paper the above method is 

reported in application to diffusion processes 
in solids. 

STATEMENT OF THE PROBLEM 

For the diffusion theory. the problem of the 
motion of those relatively few particles of which 
the fluctuation energy casually increases up to 
E’ 3 E $ kT due to large fluctuation, is of 
substantial interest. In each of these relatively 
unusual cases within some small region of a 
body (of the order of atom sizes) a short-time 
local state appears when particle motion is 
considerably nonlinear. There are no general 
methods for description of such nonlinear 
motions of interacting particles. Besides, the 
probability of great energy fluctuations at a 
crystal particle cannot be calculated by direct 
application of the fluctuation theory to an 
individual particle. Usually these questions are 
not considered by the diffusion theory, but it is 

assumed* that while calculating the probability 

of particle passage over the barrier the state and 
behaviour of the surrounding particles is neg- 

lected. Frenkel [la] formulated the assumptions 
which are the basis of such an “individualistic-’ 
description of an elementary diffusion act (and 
other activation processes) in solids (the so- 
called hypothesis of “instantaneous” cncrgy 
concentration on a particle and ~‘installtiltleo\lu“ 
discarding of the excess energy I. Such assump- 
tions are presumably specified by the fact thai ;t 

number of problems connected with formation 
of large energy fluctuation on one of the strong 
interacting solid particles and its passage over 
the barrier are not yet investigated. 

Let us consider some of them. In many cases 
the energy E’ 3 E 9 kT which is necessary for 
the particle to pass over the barrier may con- 
siderably exceed the mean energy of thermal 
motion of all the near neighbours of the particle 

considered. Under such conditions a random 
energy increase in one of the particles up to 
E’ 3 E may occur only due to the fact that the 
energy necessary for it will be transmitted to the 
particle from some distance 1 (for the time ?(I’ z 
//2;,, on the average) as a result of collective 
motion of many surrounding particles supplying 
energy to the region of its random concentration 
at average velocity ZJ,, (of the order of sound 
velocity). The question arises about the value of 
average time-space scales I and ?’ i) characterizing 

formation of such great energy fluctuations. 
their dependence on E, crystal structure and SO 
on. Another problem deals with the method of 
predicting the probability of large energy fluctu- 
ation on one of the many interacting particles. 
i.e. when the usual fluctuation theory cannot 
directlybeappliedtothisparticle.Theseproblems 
are discussed below without dwelling upon the 
details of mechanical motion of the solid 
particles (which eliminates the difficulties of 
solving the mechanical problem of non-linear 

?he appropriate references and literature analysis on 
the diffusion theory in condensed bodies may be found in 
many works (see for example [ 14.8, 13-161). 
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particle motion within the region of formation of 
large energy fluctuations). We completely assume 
the theoretical probability point of view while 
expressing the motion of solid particles in terms 
of the statistical theory of fluctuations with 
continuous spectrum, and describe the collective 
fluctuations of solid particles using the concept 
of multidimensional vector steady random 
functions [17, 181. 

DESCRIPTION OF THE MODEL 

First we shall consider an equilibrium system 
consisting of N, interacting similar particles of 
mass m which oscillate around the equilibrium 
with the coordinates qi where i = 1,2,. . . ,3N,. 
Assume that 3N, = N of the coordinates qilt, 51 
of all the particles form a continuous 3N,di- 
mensional stationary (in a narrow sense) vector 
process [17, 181 R(t,i’) = {qi(t, t)} which is 
believed to be ergodic and almost everywhere at 
least twice-differentiable with respect to time t. 
Here 5 is the space variable of elementary 
events. The correlation between the coordinates 
qi and qk at arbitrary time moments t, and t, is 
characterized by the correlation matrix with the 
elements 

‘,(A’) = [qi(t + At) - 4111 [qk(r) - 4J 

which are assumed to be absolutely integrated 
and fiossess the correlation interval tb satisfying 
the condition IDJtb)l 4 a’, where a2 = Oii(0). 
Time differentiation of the random function 
R( t, t) yields 3N,-dimensional steady random 
vector function I&t, <) = (cj,(t, <)} possessing 
ergodic property and describing random fluctu- 
ations of 3N, components of di velocities of N, 
solid particles. By using this function we build 
3N,-dimensional continuous random steady 
vector function P(t, 5) = {P,(t, t)} that describes 
the correlated fluctuations N of the components 
P,(t, 5) = mji(t, 5) of pulses of N, particles. The 
random process @‘(t, 5) possesses the correlation 
matrix with the absolutely integrated elements 
B,(At) with the correlation interval t, satisfying 
the conditions JBik(tO)J < S2, where S2 = B,,(O). 
Differentiation of the function 9J(t, 5) over t 

yields N-dimensional steady random function 
F(t, v) = {!‘,(t, q)} which describes random oscil- 
ations of the forces acting upon solid particles. 
The correlation of Pi(tl) and k&t,) values is 
characterized by the correlation matrix with the 
absolutely integrated elements C,(At) and cor- 
relation interval t: satisfying the condition 

jlC&$ I<< CJO). 

Next we suppose that the spectra of the 
random functions R(t, 0, P(t, 0, F(t, q) are 
practically broken by the Debye frequency 
vg = KO/h, and the body temperature T is 
high enough and satisfies the condition T $-O/4. 
Then the values with dimensions of time, pulse 
length and force characterizing motion of indi- 
vidual particles of the body are as follows 

a, 

So x J(mK9); (2) 

The above model may be applied to non-equi- 
librium systems with rather slow (in particular, 
diffusive) processes whose relaxation time q 
satisfies the condition 

T, B AZ >> t, (24 

wherein AZ is the time interval for small enough 
changes in the parameters of the system. 
Generally speaking, in this case the random func- 
tions R(t, g), P(t, 5) and F(t, 5) will be unsteady. 
However, when fulfilling condition (2a), to 
realize the random functions whose duration is of 
the order of AZ, the above considerations involv- 
ing steady random functions may be used with 
sufficient accuracy.* 

* If the accuracy of determining the coordinates and 
particle pulses is prescribed by the values a, and S, from (2), 
then the general relationships for the entropy of continuous 
distributions [18, 191 may be employed to build the entropy 
expressions which correspond to simultaneous single-time, 
two-time, etc. multipartial density of probability of distri- 
bution of coordinates and pulses p (q, p) etc., solid particles, 
distribution of coordinates or particles (as well as of forces 
acting upon them) separately [7, 81. Similar relationships 
may also be constructed for an unsteady-state case. 
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SPACE-TIME EVALUATION FOR LARGE ENERGY 
FLUCTUATION ON ONE OF THE INTERACTING 

PARTICLES 

The random energy concentration E’ 2 E on 
an individual (for example j-th) solid particle 
means peak of some realization P:(t) of the 
random function Pj(t, 5) up to P(E’) 2 P(E) = 
,/(2mE) (see Fig. 1, solid line).* From this point 
of view an elementary event of particle transition 

FIG. I 

over the barrier comprises the following stages: 
(a) increase in energy (pulse) of particle for the 
time Z(l), on the average, from the values which are 
considerably less than E (less than P(E)) to the 
values E’ 2 E (or P(E’) > P(E)); (b) transition 
over the potential barrier; (c) decrease in energy 
(pulse) of a particle from the values E’ 3 E 
(P(E’) 2 P(E)) to the value of the order of its 
mean energy (mean pulse) of thermal motion 
for the time T(2), on the average. When calculating 
t, $*) and T(2) we proceed from energy determina- 
tion of the durability of the function P?)(t) peak 

c221 

i.e. from the surrounding region with an average 
volume (in an isotropic case) equal to 

:, (6i 

This region possesses the number of degrees of 
freedom 

f -7 
If the condition ,/(G) s I is satisfied. then the 
volume Q may be described in terms of statistical & j [q@(t)]2 dt = fE (3) 

__~.____~ 
* The peaks of some random functionc were investigated 

in connection with different physical and engineering 
problems [20, 213 neglecting peaks of some components of 
the multidimensional vector random process provided 
that the appropriate conservation laws are satisfied. 

where f’ is the constant of the order of unity 
depending on the shape of the peak, and z is a 
random value. An exact form of the function 
peak P?‘(t) is unknown in every case. Therefore 
to estimate the average values of 7”‘) and Z we 
approximate the peak of the function P(:)(I) by 
the triangular peak with angular coefficient 
c(5) (see Fig. 1, broken line). Bearing in mind that 
energy is supplied to a particle by its near 
neighbours whose number ib x*, the vaiue 
<(Z) may be estimated (using (2)) as i(t) -I xcio. 
With the above assumptions and supposing 
r’ f ) z ri2. we get from (2). (31 

where fi is a dimensionless coefficient of the order 
of unity. Consequently, an energy increase to the 
values E’ 3 E for the time ?(l) is accompanied by 
energy supply from other particles at distances 

*It is not the same for a number of cases. For instance, 
in ionic crystals where the interaction forces between 
particles decrease rather slowly, a definite contribution is 
made by,, the second and consequent coordination spheres. 
Similar situation appears in some crystals where various 
groups of neighbours are at somewhat different distances, 
etc. 
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thermodynamics that will be assumed below. 
The only parameter /l E 1 entering formulae 
(4)-(7) may be found by comparing the provided 
and expe~ental data. 

CALCULATION OF THE PROBABILITY OF LARGE 
ENERGY FLUCTUATION ON A SOLID PARTICLE 

The probability of the random energy over- 
shoot on a solid particle is mainly determined by 
local conditions existing at certain time moments 
in the surrounding region p of mean volume Sz. 
Contribution of more removed regions and 
con~tions existing in the region earlier, quickly 
decreases with an increase of the appropriate 
space and time intervals. For description of 
random energy fluctuations of the region ,u we 
introduce the continuous normal four-dimen- 
sional random field u&t, r) [17, 211 of the bulk 
density of energy which is assumed to be steady 
in time t, uniform along the coordinates r, 
ergodic and differentiable almost throughout. 
The energy of the region p of the mean volume 52 
is described by the random function U(t) = 
1 U,(t, r) dr which is continuous and almost 
everywhere differentiable by a steady normal 
random function possessing an ergodic property. 
It is assumed that its auto-correlational function 
A(&) is absolutely integrated and allows intro- 
duction of the correlation interval t, which 
satisfies the condition A(tk) 6 c? = A(0). 

The probability of change in the energy 
AU(At) of the region ,u for the time At due to 
energy transfer between the region ~1 and the rest 
of the system parts is determined by the proba- 
bility density 

fCAU(At)] = J(4n.“CII_ L(At)]> 

WJW12 
4rx*[l - &At)] (8) 

where J(At) = A(At)/a’. Since the spectrum of the 
random function U(t) is practically broken from 
above by the frequency v. z l/#) then t, z 9. 
Now from (8) we find the mean-root-square 
energy change of the region .u for the time ?(r) 

{[AU@(‘))‘]>* = b(P)) z a2 where 

0: = J(KCz-@); C=l(n=Ky%. (9) 

For calculation of the probability W of energy 
fluctuation to the level E’ B E per unit time on 
one of the particles of the region 11 with regard to 
changes in this region which accompany forma- 
tion of such fluctuation, we consider two modes 
of fluctuations: (a) relatively slow fluctuations 
(whose frequency does not exceed ?“J due to 
energy changes in the region ~1 because of energy 
exchange between the region and other parts of 
the system: (b) fast fluctuations due to energy 
redistribution within the region ~1 during time 
not longer than r. If W(E/U)?“’ is the probability 
of the fact that for the time ?(“’ on one of the 
particles of volume $2 possessing energy U, 
energy E’ 3 E is accumulated by chance, then 
for W we have 

W= jW(E/ 

where 

W(i)= J Y@ 
E’>E 

dE’; 

Here Wi(E’/U) is the probability of forming a 
random energy overshoot to some definite 
valueE’onAn = n - ~1’ + n degrees of freedom 
of the region per unit time and unit energy 
interval and equal to 

‘w, 6) = &exp(v) (12) 

where h, is a value with the dimension of action; 
S, = S( U’) is the maximum value of the entropy 
of n’ = n - An degrees of freedon possessing the 
energy U’; S, z S[U’ - E’ + b(i(“)] is the 
value of the entropy n’ of degrees of freedon of the 
region provided that the energy E’ appeared to be 
accidentally concentrated on An = (n - n’) < n 
degrees of freedom of this region. On the other 



1334 YU. L KHAIT 

n’ degrees of freedom this energy loss is somewhat 
compensated by the energy supply h = b(f(“) 
into the region from other regions of the system.* 
Then from (10) to (12) we get 

(13) 

The mean time between two successive energy 
fluctuations to the level E’ 3 E on one and the 
same An degrees of freedom is equal to 

n YQ Zd=-=_ 
2W 3QW 

(14) 

(since the probability W refers to one of n/3 
particles of volume Sz). To reduce equation (13) 
to a more convenient form we expand the function 
S[L;,, - E + b] into series over the powers of 
the value (E’ - b) provided that heat capacity is 
independent of temperature. Then (if we neglect 
deviation Ali of energy (i’ from the average value 
D) from (13) with respect for (4) and (7) we obtain? 

(15) 

where the pre-exponential multiplier is 

*The process of energy removal b from the volume .C? 
which accompanies formation of energy fluctuation on a 
particle and is not considered here makes negligible contri- 
bution to the probability of the process under consideration 

PI. 
t If we take into account deviations of u from ii, then in 

(16) additional multi liers 

exp[p[qy] and exp[ - $rG)‘] 

appear where 

1 x3Q 0’ 
q=$ya-:, 7’ 

! 10 

However as these multipliers partially compensate each 
other and 7’ z 8, their contribution is relatively small. 

(16) 

It was assumed above that the body consists 
of similar particles. However the reported 
method of calculating the probability of large 
energy fluctuation on separate particles of the 
system of interacting particles is also generally 
valid (within some calculation details) if the 
body consists of different particles (solid solu- 
tions. etc.). 

CALCULATION OF DIFFUSIVITY IN SOLIDS 

Let us consider the following two cases. 

1. Diffusion of particles proceeds without an? 

defects. In this case transition of a particle 
(particles) over the potential barrier occurs with 
the probability a < 1 if energy fluctuation on a 
particle (particles) reaches the value E’ > E. 
Particular mechanisms of particle transition 
over the potential barriers are not dealt with in 
this paper and E is assumed to be known. 

2. Diffusion proceeds over vacancies (or other 

defects). In this case two conditions should be 
satisfied in order than an elementary event of 
diffusion takes place: (a) formation ofappropriate 
energy fluctuation on a particle (particles): 
(b) presence of vacancy (or other defect) in the 
vicinity of a particle with the developed energy 
fluctuation. 

We consider first self-diffusion without defects. 
Using (6), (14H16) we get for the diffusion coef- 
ficient 

D=e=Doexp 
6zd 

c 17) 

D 

0 
= arp2QW 

2YQ 
0 = Dooe”‘“’ 

(18) 
aw2Q 

,D,,=- 
2CE 
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aq&Q K8 ‘p2KB 
= 16ny/?4A; E h 0 - 

(19) 

where q is a factor depending on the type of 
crystal lattice. Introducing dimensionless values 
we derive from (17H19) the following expres- 
sions 

D, = D,, exp MC*); 
aqp2K8x4 

D,, = 16,rYp4~3C2h; 
I I 

6 = 2/3+ $ +. 
( > 

(21) 

The equations obtained may also be used when 
considering diffusion in mixtures, etc. If in this 
case a crystal retains the structure of the basis 
substance, then when calculating D it is neces- 
sary to take into account the position of the 
diffusible foreign particle in it, since a number of 
its near neighbours xef may noticeably differ 
from x, etc. 

When diffusion proceeds in the form of re- 
placing vacancies by a particle, it is necessary 
to allow for the probability of vacancies present 
in the vicinity of this particle which is equal to 
II/, z z exp [-(EC//R)] (where El is an energy of 
vacancy formation) as well as decrease in the 
effective coordinational number at least by 
unity (for a particle diffusing). Then substituting 
the value a by a$, and the appropriate para- 
meters by x0, 8”, A,“, Q, and y, in (17) we arrive at 

Do = D,,exp(-7) (22) 

(23) 

D 000 = (24) 

In expressions (22)-(24) the dependence of Do 
on T is determined by the total energy E + Ev 
and the pre-exponential factor Do0 is controlled 
only by the “threshold” energy E necessary for a 
“jump” over the barrier. 

DISCUSSION OF RESULTS 

Comparison of the predicted and experimental 
values of Do and D for metals with cubic and 
hexagonal lattices for ion crystals and semi- 
conductors of various types showed that at 
/I z 1 the equations obtained lead to agree- 
ment between the predicted and experimental 
data in the cases when activation energy and 
pre-exponential factors Do are not too small. 
The reasons for the anomalous small values Do 
observed are not quite clear though the relation- 
ships obtained above are likely to discover new 
possibilities for their consideration. Below we 
confine ourselves to some results describing 
the case when the pre-exponential factor is 
not too small. 

From (18), (19), (21), (23), (24) it is clear that 
according to [1] factor Do slightly depends on 
temperature. These expressions also show a 
strong (exponential) dependence of Do not 
only on the energy E but on a number of 
parameters of a solid (x, Q, etc.). We consider 
some conclusions following from this depen- 
dence. 

1. It follows from (18H21), (23) and (24) that 
Do is an exponential function of the dimension- 
less relation c = E/Kg, where 8 and E while 
changing from one body to another may vary 
within a wide range, and energy E may also 
vary with changing conditions and diffusion 
direction. These are some examples. 

(a) Self-diffusion in crystals with equal crystal 
lattices (equal x and y). In this case, in spite of 
considerable difference in activation energy, the 
values of E and Do may differ a little, which 
often takes place in practice (for example, at 
self-diffusion in y-Fe and Pb [3]). 

(b) At remarkable anisotropy of self-diffusion 
the values of E for diffusion in various directions 
are different. The calculations by equations 
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(17H19) for hexagonal closely packed lattices 
and a number of other systems yield coincidence 
with experimental data at /I = 1. It was taken 
into account that the effective coordinational 
number xef may be larger than x, since the most 
remote neighbours may contribute to a definite 
degree to zef [23]. 

(c) Diffusion of low admixtures in substitu- 
tional solid solutions, where the observed 
values of activation energy E, and pre-exponen- 
tial factor & may considerably differ from the 
appropriate values observed at self-diffusion of 
the basic lattice-forming element. 

The facts like these may be explained using 
the relationships obtained. since E, # E and 
Ci # E.* 

2. According to (18), (21) and (23) the factor D, 
is an exponential function ofthe value 6 y yfx- 2. 
Because of it, other conditions being equal, its 
relatively small changes may noticeably affect 
the values of D,, which may explain the cor- 
responding experimental facts taking into 
account the change in crystal structure. 

(a) Diffusion in interstitial solid solutions. It 
was taken into consideration that the admixture 
atoms settle at interjunctions and the number of 
their nearest neighbours may differ markedly 
in coordinational number of the main lattice. 
The calculations for a number of interstitial 
solid solutions showed agreement with experi- 
mental values of D, at /I z 1. 

(b) Diffusion in ion crystals is closely connected 
with ion conductivity where experimental data 
are usually described by the sum of two sum- 
mands of the type (I) [13,24,25]. In these sum- 
mands the activation energy E, and E, may 
differ two to three times, and pre-exponential 
factors. by several orders of magnitude. The 
above equations for moderate values of D, 
yield coincidence with the experimental data if 
account is taken of relatively slow decrease in the 
forces of interaction between particles of ion 

*The calculations of the coefficients of se&diffusion in 
hexagonal crystals and diffusion in substitutional and inter- 
stitial solid solutions were carried out together with V. M. 
Beilin. 

crystals, which leads to increase in the effective 
coordinational number xef because of contri- 
butron of other coordinational spheres. 

We assume that the above examples will 
illustrate the essential difference between the 
relationships obtained and conventional equa- 
tions for diffusion coefficients and will show the 
possibility of experimental check of the above 
relationships. 

CONCLUSIONS 

The comparison with experimental data 
showed that equations (17x24) open some new 
possibilities for better understanding the laws 
and peculiarities observed in diffusional pro- 
cesses, as well as for setting closer relationship 
between the kinetics of these processes and the 
structure of a solid, processes of energy transfer, 
and so on. 

We shall point out that the above method of 
calculating the rates of activation processes 
allows to account for the effect exerted by 
external variables and constant electric fields 
and mechanic stresses on the rates of activation 
processes [5,8]. Here the concepts of mechanics 
and solid electrodynamics as well as the thermo- 
dynamic perturbation theory may be used 
because the condition QU, 4 nkT is usually 
satisfied where 52 and n are determined in accor- 
dance with [6, 71 and Ue is bulk density of the 
external field. The volume CJ may be described 
in terms of thermodynamics. 

The implicit account of the finite rate of 
energy transfer by “lattice” degrees of freedom 
as well as of macroscopically small volume in the 
process of generation of great fluctuation energy 
on an individual particle of the system of strong- 
interacting particles (rather than the hypothesis 
of instantaneous concentration of energy on the 
particle and its instantaneous overshoot by the 
particle) is generally peculiar of the calculation 
of the rates of various activation processes in 
similar systems at sufficiently high activation 
energies. In this connection the above method of 
calculating the probabilities of large energy 
fluctuations may be also applied to other 



A CONTRIBUTION TO THE DIFFUSION THEORY IN SOLIDS 1337 

activation processes (both bulk and surface) 10. 

with crystal and amorphous bodies and, pre- 
sumably, of liquids at moderate temperatures. 
In case of amorphous bodies and liquids the 1 I. 
values x, y etc. are determined by the structure 
corresponding to the nearest order, and for 12. 
surface processes, by the structure of the con- 
densed body surface. 

To conclude I wish to express my appreciation 
to the corresponding member of the USSR 13. 

Academy of Sciences S. Z. Roginsky and Prof. 
L. S. Polak for fruitful discussion of the problems 14’ 
under consideration. 15. 
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UNE CONTRIBUTION A LA THEORIE DE DIFFUSION DANS DES SOLIDES 

R6sumb-On discute une mtthode statistique de calcul du coefficient de diffusion D dans des solides. La 
methode revele une forte dependance de D vis-a-vis des paramt?tres mesurables caracteristiques de la 
structure et du spectre vibrationnel de particules dans un corps solide. On a calcult la probabilite d’une 
grande fluctuation d’tnergie a temps court (avec f duree de vie moyenne) pour l’une des particules en inter- 
action, avec Cventualite d’un changement d’ttat des particules environnantes dont le mouvement foumit le 
supplement d’energie necessaire ii la plaque pour une concentration casuelle a des distances 1 = v,r/2. 

Les changements dans le temps des coordonntes et des pulsations des particules aussi bien que des 
fluctuations d’bnergie dans des volumes microscopiques sont d&its par la theorie des fonctions aleatoires 
stationnaires. 

Dans les formulations finales les echelles espace-temps de grande fluctuation d’tnergie pour des particulcs 
individuelles, le coefficient de diffusion et le facteur pre-exponentiel Do sont relies aux parambtres mesurables 
d’un solide (E, x, 0, J.,, Q, y); ici Do est une fonction exponentielle de ces parametres. 

On donne la procedure d’application des relations obtenues pour des processus d’auto-diffusion et de 
diffusion de melanges dam des solides de structure differente. Une comparaison est faite avec les resultats 

experimentaux correspondants. 
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BEITRAG ZUR DIFFUSIONSTHEORIE IN FESTKGRPERN 

Zusammenfassung-Eine statistische Methode zur Berechnung des Diffusionskoeffizienten D in Fest- 
korpem wird behandelt. Die Methode zeigt eine starke Abhangigkeit des Koeffizienten D van den 
messbaren Parametern, die charakteristisch fur die Struktur und das Schwingungsspektrum der Teilchen 
in einem Festkorper sind. 

Fur grosse Werte einer Kurzzeit-Energieschwankung ist die Wahrscheinlichkeit berechnet (mittlere 
Lebensdauer 7) und zwar an einem Teilchen bei Beriicksichtigung der Zustandslnderung der umgebenden 
Teilchcn. dercn Bewcgung die niitige Energie zur Konzentration im Abstand 1 v v,r!2 liefert. 

Die zeithche Anderung der- Kooi dinaten und Impulse der leiichen sowie Energieschwankungen rm 
mikroskopischen Volumen werden durch die Theorie der stetigen Zufallsfunktionen beschrieben. 

In den Endgleichungen werden die Zeit-Raum-Skalen der grossen Energieschwankungen bei Ein- 
zeheilchen, ihre Wahrscheinlichkeit, der Diffusionskoeffizient und der vorexponentielle Faktor n, auf 
die messbaren Parameter eines Festkorpers (E. ti. i,> Q. ;,J bezogen. Hier erscheint D,, als Euponential- 

funktion diescr Parameter. 
Es wird ein Verfahren gc/eigt. wie man drese Berlcliungen aul PrvLesse anwenden kann, wie Selbsr- 

Diffusion und Diffusion van Beimischungen in FestkSrpern verschiedener Struktur. Die Ergebnisse 
werden mit entsprechenden experimentellen Daten vcrghchen. 


